Industry Insight

electric car batteries (1)
Industry Insight

How Long Do Electric Car Batteries Last?

How Long Do Electric Car Batteries Last? The lifespan of electric car batteries is a multifaceted subject influenced by various factors. Here’s a detailed and informative analysis, incorporating relevant figures and information to help you understand how long these batteries typically last. Overview The lifespan of an electric car battery is usually defined not by complete depletion but by the national standard where the battery capacity drops to a specific percentage (e.g. 70%) of its original capacity. Several factors influence the lifespan of EV car batteries, including charging and discharging frequency, depth of discharge, usage duration, environmental conditions, and thermal management. Specific Lifespan for Electric Car Batteries Usage Duration Cycle Life Shelf Life Influencing Factors Electric Car Batteries Maintenance Recommendations Summary The lifespan of these batteries is influenced by various factors. Generally, lithium batteries last between 8 and 10 years, with an effective lifespan of 5 to 7 years. Proper usage and maintenance can extend battery life. Additionally, with ongoing technological advancements, future electric car batteries are expected to have longer lifespans and improved performance. By understanding these factors and following best practices for maintenance, electric car owners can maximize the lifespan and efficiency of their vehicle’s batteries, ensuring reliable performance and cost-effectiveness over time. At Brogen, we provide customizable EV battery solutions. Inquiry: contact@brogenevsolution.com

electric vehiclet traction battery
Industry Insight

What is an Electric Vehicle Traction Battery?

What is an Electric Vehicle Traction Battery? An electric vehicle (EV) traction battery, commonly referred to as an EV battery, is a critical component essential for electric vehicles, electric trains, electric trucks, and other similar applications. It plays a pivotal role in the advancement of new energy vehicles, making a significant stride towards future energy transitions. Below is a comprehensive overview of electric vehicle traction batteries: Definition and Applications Electric vehicle traction batteries serve as energy storage solutions designed specifically to power electric vehicles, electric trains, electric trucks, and comparable electric applications. They distinguish themselves from traditional auxiliary batteries primarily used to ignite combustion engines in automobiles. Types of Electric Vehicle Traction Batteries These batteries encompass a variety of types, including: Structural Composition of an Electric Vehicle Traction Battery Typically, an EV traction battery comprises: Key Features The EV traction batteries offer the following distinct features: Applications These EV batteries find applications across several industries: Conclusion In conclusion, EV traction batteries stand as pivotal components within new energy vehicles, facilitating the transition to sustainable energy practices and environmental conservation. With ongoing technological innovations and expanding market horizons, the future prospects for EV traction batteries appear increasingly promising. At Brogen, we supply EV traction batteries for almost all types of electric vehicles and provide customizable OEM / ODM services. Learn more here: https://brogenevsolution.com/ev-battery/ Inquiry: contact@brogenevsolution.com

electric recirculating ball steering system
Industry Insight, Technologies

Electric Power Recirculating Ball Steering (eRCB) for Commercial Vehicles

Electric Power Recirculating Ball Steering (eRCB) for Commercial Vehicles As the commercial vehicle industry trends towards electrification, intelligent systems, and connectivity, the power steering systems in commercial vehicles are also moving towards electrification. The evolution of commercial vehicle steering technology has progressed through several stages: from mechanical steering, to hydraulic steering, to electro-hydraulic steering, and now to fully electric steering, such as the electric power recirculating ball steering. Our eRCB installed on hybrid electric trucks What is the Electric Power Recirculating Ball Steering (eRCB) System? Unlike traditional mechanical recirculating ball steering systems, the electric power recirculating ball (eRCB) steering system integrates an electric motor and a reduction mechanism at the input end of the mechanical recirculating ball steering gear. This system uses steering signals, vehicle speed signals, and active control commands to control the motor, generating steering torque. This allows for different levels of power assistance and enables active steering functions. How Does the Electric Power Recirculating Ball Steering Work? When the steering wheel is turned, a torque sensor sends a torque signal to the controller. This signal is generated by a torsion bar inside the steering shaft, where the ends of the bar twist relative to each other under external force, reflecting the angle of twist to the torque sensor. The steering torque is directly proportional to the torsion bar’s twist angle. A vehicle speed sensor sends a speed signal (a square wave signal) to the controller. The controller then processes the torque signal and the speed signal from the dashboard and uses a pre-set force model to control the DC motor. By adjusting the current to the motor, the output torque changes, which is amplified by the reduction mechanism to directly assist the steering gear. What Are the Advantages of Electric Power Recirculating Ball Steering Systems? Compared to traditional hydraulic power steering, electric power recirculating ball steering offers the following advantages: 1. Reduced Procurement Costs Traditional hydraulic power steering systems for electric vehicles require an additional electric motor and controller, as there’s no engine-driven hydraulic pump. This setup can cost significantly more than electric steering. 2. Fewer Components and Lighter Weight Hydraulic steering for electric vehicles requires extra components like hoses, reservoirs, pumps, motors, and controllers. In contrast, electric power steering is an integrated system that saves time and effort during assembly. It’s approximately 50% lighter than hydraulic steering, making it easier to install and maintain, while also enhancing vehicle layout and safety. 3. Extended Driving Range by 25% Hydraulic steering systems need a motor with at least 2 kW power that runs continuously. In contrast, electric steering only requires a 12V (or 24V) power source, with a bus only needing around a 400W motor. The system only consumes power when steering, leading to minimal energy loss. Tests show that this can extend the driving range by over 25%. 4. Improved Steering Ease and Stability The eRCB system adjusts the steering assistance based on vehicle speed—light and easy steering at low speeds and stable, secure handling at high speeds, improving vehicle stability and control. 5. No Hydraulic Fluid, No Leaks Since the eRCB system doesn’t use hydraulic fluid, it eliminates the risk of leaks and reduces environmental pollution. 6. High Reliability and Maintenance-Free The eRCB system is highly reliable, maintenance-free, and performs well even in low temperatures. 7. Broad Applicability The eRCB system is versatile, suitable for fuel-powered vehicles, and hybrid vehicles, and is the ideal choice for pure electric vehicles. Brogen’s eRCB Solutions System Functions Speed-sensitive power assistance Active return Dampling compensation function Friction compensation function Rack end protection function Inertia compensation function Temperature management Motor thermal protection System Advantages Provides eRCB products supporting L2 autonomous driving Configurable interfaces, compatible with various TAS sensor types Supports CAN/CANFD interface Supports Cybersecutiry hardware encryption Supports OTA upgrades Download Brochure Contact Us Get in touch with us by sending us an email, using the Whatsapp number below, or filling in the form below. We usually reply within 2 business days. Email: contact@brogenevsolution.com Respond within 1 business day Whatsapp: +8619352173376 Business hours: 9 am to 6 pm, GMT+8, Mon. to Fri. LinkedIn channel Follow us for regular updates > YouTube channel Ev systems introduction & industry insights > ContactFill in the form and we will get in touch with you within 2 business days.Please enable JavaScript in your browser to complete this form.Please enable JavaScript in your browser to complete this form. Name * FirstLast Work Email *Company Name *Your Project Type *– Please select –Car, SUV, MPVBus, coach, trainLCV (pickup truck, light-duty truck, etc.)HCV (heavy-duty truck, tractor, trailer, concrete mixer, etc.)Construction machinery (excavator, forklift, crane, bulldozer, loader, etc.)Vessel, boat, ship, yacht, etc.Others (please write it in the note)Your Interested Solutions *– Please select –Motore-AxleBatteryChassisAuxiliary inverterOBC / DCDC / PDUAir brake compressorEPS / EHPS / SbW / eRCBBTMSOthers (please write it in the note)Do you have other contact info? (Whatsapp, Wechat, Skype, etc.)Please introduce your project and your request here. * Checkbox * I consent to receive updates on products and events from Brogen, and give consent based on Brogen’s Privacy Policy. Submit

dump truck ev
Heavy Transport, Industry Insight, Light Commercial Vehicles

EV Truck Drive Systems: Direct Drive Motor vs. E-Axle

When it comes to the pure EV truck, understanding the differences between traditional electric motor structures and modern e-axle systems is crucial. Let’s use an electric dump truck as an example to explore these differences. Traditional Drivetrain Structure – Direct Drive Motor The traditional drivetrain in electric trucks closely resembles the layout found in conventional vehicles. The drive motor, equivalent to a diesel engine, is the heart of this system. Directly behind the motor is a reducer, functioning similarly to a traditional gearbox. The reducer’s job is to increase torque by reducing the motor’s speed, effectively amplifying power. This amplified power is then transmitted through a driveshaft to the rear axle. The rear axle, with a gear ratio of approximately 5.857, is comparable to that of traditional dump trucks. How It Works A notable feature of this system is the two-speed function of the reducer, which allows the vehicle to switch between different gear ratios based on the load, similar to shifting gears in a traditional transmission. This functionality provides both speed and power as needed. E-Axle System Now, let’s delve into the e-axle system. An e-axle integrates the electric motor with the rear axle, combining four major functions: the motor, rear axle, transmission, and differential. This integration brings several significant advantages: However, the e-axle system does present challenges. Integrating the motor with the rear axle reduces space for torque amplification mechanisms, potentially limiting the power output compared to traditional setups with a gearbox. Achieving high power levels with an e-axle requires advanced design and engineering capabilities. Brogen’s Solutions At Brogen, we supply traditional drive motor and e-axle systems for electric vehicle builders. Our e-axle for heavy-duty trucks can deliver a maximum output torque of 50,000 Nm, providing ample power for these vehicles. Our electric motors offer power options ranging from 165 kW to nearly 800 kW, catering to various commercial vehicles, including light trucks, tractors, concrete mixers, and more. Explore our cutting-edge electric axle solutions and see how Brogen can help you achieve success in the rapidly expanding e-mobility sector. Contact

blade battery for battery electric truck
Heavy Transport, Industry Insight, Light Commercial Vehicles, Technologies

How Blade Battery Packs Benefit the Electric Truck?

Electric Trucks Equipped With Blade Batteries: Higher Energy, Lower Consumption The latest all-electric truck from BYD features blade battery packs. Introduced by BYD four years ago, these LFP blade battery packs eliminate the module design, reducing many structural components. The close connection between the upper and lower casings and the battery cells significantly increases volumetric energy density, reaching levels comparable to high-energy-density ternary lithium batteries. This battery electric vehicle model boasts a battery capacity of 94.3 kWh, providing a pure electric range of over 275 kilometers, surpassing the typical 100~200 kilometer range of industry-standard electric light trucks. In addition to the impressive energy density, blade battery technology offers higher thermal stability, lower thermal runaway temperature, smaller thermal runaway reactions, and a reduced likelihood of thermal runaway compared to ternary lithium and standard LFP batteries. This makes the light-duty truck, which operates over longer distances annually, safer. The blade battery’s exceptional thermal management extends battery life, improves charging and discharging efficiency, and shortens charging time. This all-electric truck can achieve over 100 kilometers of range with just half an hour of charging, further enhancing operational efficiency. Electric Truck Chassis Optimization: Better Layout, Higher Load Capacity Unlike traditional electric light trucks that position the standard battery boxes on the sides of the chassis or hang them in the middle, this electric truck’s blade battery is semi-embedded within the chassis frame. This structure integrates the battery into the chassis, making it part of the vehicle’s framework, providing both an energy source and structural rigidity. This design completely revolutionizes traditional electric light truck chassis layouts. Additionally, the semi-embedded design increases the chassis’ ground clearance, improving overall vehicle possibility. The flat-laying design of the chassis battery allows the truck to use a direct-drive system with an integrated electric drive axle. This system features a flat-wire motor and reducer within a shared casing, improving slot fill rate and efficiency. The lightweight aluminum alloy casing enhances transmission efficiency and reduces energy loss compared to traditional direct-drive systems. In terms of the suspension design, the vehicle uses a 3/5+6 leaf spring, with significantly more leaves in the rear axle springs, directly boosting the vehicle’s load capacity. Cabin Design: More Space, Lower Wind Resistance Building on the previous generation electric light truck, which positioned the integrated controller and battery systems on the sides of the chassis under the body, this EV truck continues this design, thanks to the more compact blade battery pack. This allows for a more spacious cabin layout. The cabin details have been optimized, upgrading the traditional mechanical handbrake to an electronic handbrake for increased comfort during driver rest periods while charging. Additionally, the vehicle’s battery system is split into two sets: one located on the side of the chassis under the body, and the other under the tilting cab, powering the low-voltage system of the cabin. This separated design enhances the stability and safety of the cabin’s power supply system. Summary In summary, the new electric light-duty truck, equipped with a 94.3 kWh blade battery, not only significantly improves vehicle range but also addresses user-identified issues through comprehensive upgrades to the chassis structure and cabin design. By leveraging blade battery technology, the vehicle reduces costs and increases efficiency for users. With competitive blade battery prices and enhanced electric truck battery capacity, BYD’s approach to batteries for electric vehicles sets a new standard in the industry. Looking for an EV Battery System for Your Project? Here at Brogen, we provide customized EV battery solutions, including standard LFP battery packs and advanced LFP blade battery systems for trucks, buses, vans, and other construction equipment or specialty vehicles. Contact us through the form below and we’ll get back to you shortly to discuss how we can empower your EV project!

3-in-1 on-board charger (OBC) + DCDC+ PDU
Industry Insight

Everything You Need to Know About The On Board Charger for Electric Vehicles

Everything You Need to Know About The On Board Charger for Electric Vehicles What is an on-board charger? An On Board Charger (OBC) is a device that converts AC power into DC power. It transforms the AC voltage from charging stations into the DC voltage required by the battery. OBCs are installed in electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). They enable these vehicles to be charged using AC power from residential or public charging stations. The output power of an OBC typically ranges from 3.3 kW to 22 kW. A significant advantage of OBCs is their ability to charge electric vehicles using standard household outlets. What are the different methods of charging an electric vehicle? Electric vehicle charging stations can be broadly categorized into two types: AC charging stations and DC charging stations. AC Charging Stations As the name suggests, AC charging stations provide alternating current (AC) from the electrical grid to electric vehicles. The onboard charger then converts the AC to direct current (DC) to charge the vehicle’s battery. These stations, also known as Level 1 and Level 2 chargers, are used in residential and commercial applications. The advantage of AC charging stations is that the OBC can adjust the voltage and current according to the vehicle’s needs. This eliminates the need for the charging station to communicate with the electric vehicle. However, the disadvantage is their low output power. It results in longer charging times. AC power from the grid is delivered directly to the OBC via an Electric Vehicle Supply Equipment (EVSE), which then converts it to DC and charges the battery via the Battery Management System (BMS). DC Charging Stations DC chargers take AC power from the grid and convert it to DC, bypassing the OBC to charge the battery pack directly. These chargers typically deliver high voltages up to 600V and currents up to 400A. Unlike AC chargers, which take 8-16 hours to charge a vehicle, DC charging stations can fully charge an electric vehicle in approximately 30 minutes. These stations are also known as Level 3 chargers, with the chargers referred to as DC Fast Chargers (DCFC) or Superchargers. The main advantage of DC chargers is their fast charging time. However, they are technically complex and need to communicate with the electric vehicle to charge it efficiently and safely. As shown in the typical DC charging system diagram, the EVSE bypasses the OBC and delivers DC power directly to the battery pack. The standard capacity of a DC charging station ranges from 50 kW to 300 kW. It’s more than 6 times the capacity of a single-phase on-board charger. However, AC charging through the OBC has less impact on the battery and minimizes battery aging. What are the functions of the onboard charger? The primary function of the OBC is to manage the charging process from the power grid to the vehicle’s battery. The OBC is designed to charge the battery as quickly as possible while minimizing battery degradation. It offers two charging methods: constant current charging and constant voltage charging. Constant current charging: this method charges the battery faster, but cannot fully charge the vehicle. Constant voltage charging: also known as trickle charging, this method charges the battery more slowly but with greater control, allowing the vehicle to reach a full charge. To optimize charging speed, the OBC uses constant current charging at the beginning of the charge cycle and switches to constant voltage charging toward the end. The OBC also plays a critical role in the bi-directional charging mode available in some vehicles. This capability allows it to convert DC power from the high-voltage battery pack back to AC power, supporting AC loads (Vehicle to Load, V2L), grid power (Vehicle to Grid, V2G), and even home power (Vehicle to Home, V2H). Hardware architecture of the OBC The OBC primarily consists of the following hardware components: Input Voltage Measurement Circuit: Measures the input voltage to control the conversion circuit. Input Filter: Suppresses internal noise or noise from external devices. Full-Wave Rectification Circuit: Converts AC voltage to DC voltage. Power Factor Correction (PFC) Circuit: Improves power efficiency degraded by waveform phase shifts. Voltage Conversion Circuit: Converts voltage using components such as an isolation transformer and field-effect transistor (FET) switches. Output Filter: Suppresses noise generated internally. Output Voltage Measurement Circuit: Measures the output voltage to control the conversion circuit. Control Circuit: Manages the conversion circuit and other components. DC/DC Converter: Provides power to the control circuit. Communication Interface: Facilitates communication with external devices. What are the trends and challenges in OBC development? The OBC is a critical component for both battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). As the number of electric vehicles increases, the number of vehicles equipped with OBCs will also increase. At the same time, more electric vehicles will be equipped with DC fast charging capabilities.Key trends and challenges in OBC development include: Adaptation to 800V High-Voltage Platforms: OBCs will be compatible with these high-voltage systems. Increased Output Power: As 800V platforms become more common and battery capacities grow, OBCs will need to provide higher output power. Future OBCs will need to feature high voltage (high withstand voltage), high current, low loss, high heat resistance, and compact size. Bidirectional Charging Capability: OBCs will need to support bidirectional charging, allowing the conversion of DC power from high-voltage battery packs into AC power to support external AC loads. Use of Discrete High-Voltage Components: These components will be widely used in OBCs to enhance performance. Increased Power Requirements: The trend towards fast charging will significantly increase the power requirements of OBC topologies. Our On Board Charger Systems Engineered for top-tier power conversion efficiency and remarkable power density, our chargers cover a broad power spectrum, ranging from 3.3 kW to 40 kW. Whether you’re driving a passenger car, bus, van, or LCV, or require upfit power supply for specialized vehicles, our comprehensive solutions ensure seamless integration and optimal performance.  Applicable for both PHEV and BEV Wide input range, 1 phase

Brogen epowertrain-motor 100kW Electric Motor
Industry Insight, Light Commercial Vehicles

What Are The Benefits of Direct Drive System for Electric LCVs?

Two Major E-Powertrain Solutions for LCVs Electric power has become the primary driving force for new energy light trucks. These trucks typically employ two main power layouts: one utilizes a traditional drive motor paired with a gearbox and rear axle, while the other employs a combination of a motor and an electric drive axle. Initially, many automakers adopted the former approach to capitalize on emerging opportunities driven by policies and market demands. This involved directly modifying the architecture of conventional fuel-powered light trucks to create pure electric models, maintaining consistency with traditional fuel-based layouts. Developing an entirely new platform for new energy light trucks entails significant investments in manpower and finances, along with lengthy product validation processes. The “gas-to-electric” conversion model streamlines this process by simply replacing the original engine and transmission assembly with a motor and single-stage reducer. This not only reduces development time but also simplifies post-vehicle maintenance, resulting in lower costs. Moreover, the motor + reducer + rear axle combination closely resembles the power structure of diesel vehicles. The electric drive axle represents a novel technical solution that integrates components like the motor, reducer, and differential, enabling the axle to generate power output. Its major advantages lie in reducing vehicle weight and significantly increasing chassis space due to its high integration, thereby enhancing overall efficiency. Currently, traditional “gas-to-electric” new energy LCVs remain the preferred choice for EV builders due to their lower procurement and maintenance costs. Although they may be less technologically advanced than electric LCVs utilizing e-axle technology, their minor modifications to traditional power layouts ensure stronger reliability and stability by retaining the original vehicle structure. Brogen’s Direct Drive System for EV LCVs At Brogen, we offer both direct drive systems and electric axle systems. For our direct drive motor systems, in addition to single motor + controller systems, we also offer high-speed motor + controller + reducer systems, available in both high voltage and low voltage platforms. MCU, DCDC, Brake DCAC, Steering DCAC, and PDU functions are integrated into the high-voltage controller. Benefits include Example Configurations Motor + Controller Motor + Gearbox + Controller More EV Systems for LCVs Contact Struggling to find the perfect EV solution for your project? No need to fret! Simply fill out the form below, and we’ll tailor a solution to suit your needs. Alternatively, you can reach out to us directly at contact@brogenevsolution.com. Rest assured, we strive to respond promptly within 2 business days to ensure the seamless progress of your EV program. Let’s work together to make your electric vehicle vision a reality!

800V high voltage platform for electric vehicles
Industry Insight

Understanding the 800V High Voltage Platform in Electric Vehicles

Recently, various new energy vehicle companies have been vigorously promoting the charging speed of electric cars as one of their key selling points: 5 minutes of charging for 200 kilometers, 12 minutes for 500 kilometers. And among them, the 800V high-voltage platform is repeatedly mentioned. What is the 800V High Voltage Platform? 800V is a relatively broad term. It does not mean that the entire high-voltage electrical system of the vehicle can always reach 800V. Instead, it’s an average. The voltage range of the entire vehicle is within 550V to 950V, which can be called an 800V high-voltage platform. Currently, most new energy vehicles use a 400V platform, with the voltage range of the entire vehicle electrical system between 230V and 450V. The mainstream 800V high-voltage platforms currently available in the market mainly consist of three types: the first type is full-range 800V, where all of the vehicle’s electrical systems, such as motors, batteries, controllers, air conditioners, DCDC, etc., support 800V; the second type is key components supporting 800V, such as the electric drive system and battery supporting 800V, while other components such as the air conditioner still use 400V; the third type is only the battery supporting 800V fast charging, while other components remain at 400V. In fact, the 800V high-voltage platform concept wasn’t new in 2023. As early as 2019, Porsche introduced the first production model, the Taycan, with an 800V high voltage platform. However, due to its high price, the 800V platform was once almost a luxury car-only configuration. By 2023, many 800V high-voltage platform vehicles have flooded the market, intense competition has driven prices even lower, and more consumers are now considering whether a vehicle has an 800V platform as an important purchase consideration. What are the benefits of the 800V high-voltage platform? The reason why automakers choose to upgrade to the 800V high-voltage platform is twofold: on the one hand, it can significantly improve the charging and recharging speed, and on the other hand, because the 800V high-voltage platform can reduce energy loss compared to the 400V volt platform, it can indirectly improve the vehicle’s range. However, the energy loss advantage of the 800V high-voltage platform is not very significant. This is because currently the highest efficiency of motors on 400V platforms can already reach about 97 to 98%. The room for improvement with the 800V high voltage platform is quite limited. If the 400V platform is well optimized, the energy loss can still be reduced. That’s why most car manufacturers have not promoted this aspect very much. In terms of charging speed, the advantage of the 800V high-voltage platform becomes clear. Power = Voltage x Current (P = UI). To increase charging power, you either increase current or voltage. However, there aren’t many automakers currently choosing to increase charge power through high current schemes, Tesla being one of the few. The biggest drawback of high-current systems is heating. As the current increases, the heat generated by the entire system increases geometrically, leading to overheating of high-voltage harnesses and battery packs. From an energy consumption perspective, heating increases the energy dissipated in the system. From a safety perspective, battery pack overheating also increases safety risks. In comparison, most automakers currently choose to increase voltage to solve charging efficiency issues. By increasing the voltage to achieve the same charging power, not only does the charging speed increase, but the current is also reduced accordingly, reducing the heat generated by the harness and battery. It also allows the use of thinner wire harnesses. What are the challenges of the 800V high voltage platform? However, whether the 800V high voltage platform can be used for fast charging during the charging process depends not only on whether the vehicle itself supports 800V, but also on the cooperation of the charging stack. Currently, there are relatively few 800V chargers on the market. However, some models are equipped with on-board voltage boosting systems that increase the charging voltage to 800V during the charging process, ultimately achieving fast charging. Inquiry: contact@brogenevsolution.com

blade battery solution from brogen ev solutions
Industry Insight, Technologies

What is Blade Battery? New EV Battery Technology

What is a blade battery? The blade battery is a lithium iron phosphate battery for electric vehicles. The battery cell has a special design with a common length of 96 cm and width of 9 cm, so it’s like a blade and can be inserted into the battery pack. While the standard LFP battery contains the structure of cell, module, pack, the design of the blade battery pack eliminates the battery module, which saves more space and thus greatly increases the space utilization and power density. When assembling battery packs with blade batteries, the inherent strength of the blade battery is leveraged to reduce the size of crossbeams and other components within the battery pack. Under random vibration loads, the deformation of the module is significant, while the deformation of the blade battery cells is minimal. For non-module battery packs, by modifying the structure of the battery pack, the rectangular batteries are arranged vertically and inserted into the pack, simplifying the battery pack structure and improving the utilization of internal space. What about the safety ? The blade battery successfully passed the nail penetration test and maintained a low surface temperature with no smoke or fire emissions. But its safety credentials go beyond that. The battery was tested in seven safety dimensions, including internal and external short circuits, overcharging, collisions, high pressure, connections and hazardous gas assessments. It also successfully passed collision simulation and crush tests. How is the performance? In terms of the performance of the blade battery, its high energy density provides enhanced endurance, with a maximum charging power of more than 230 kW. A mid-size vehicle equipped with BYD’s blade battery can easily exceed 700 km in range. In addition, the battery pack uses a wide-temperature efficient heat pump system and direct cooling and heating technology, which enables rapid temperature rise at low temperatures to meet driving demands. What are the advantages? The cost-saving aspect of the Blade battery is remarkable. As the main focus of development in the new energy vehicle sector shifts from simply increasing range to safer and smarter solutions, the lower cost advantage of lithium iron phosphate becomes increasingly important. By consistently reducing costs, the blade battery solution improves volume utilization by 50%, reduces component costs by 45%, and lowers overall costs by over 30%. What are the applications? In terms of applications, the Blade battery is not limited to passenger cars; it is also suitable for electric buses, vans, light-duty trucks, and heavy-duty trucks. For example, a light-duty truck equipped with a 45 kWh Blade battery pack can travel up to 280 kilometers on a single charge, making it ideal for urban delivery applications. Our blade battery solutions Our Blade battery solution ranges from 10 kW to 900 kW to meet the energy needs of different commercial vehicles. It also uses an intelligent Battery Management System platform that covers both low and high voltage. To learn more about our blade battery solutions, click the link here to view our blade battery catalog. You can also send your inquiry directly to our email and our experts will contact you to discuss how we can power your fleet. Inquiry: marketing@oe-autoparts.com

axial-flux-motor-faq from brogen ev solutions
Industry Insight, Technologies

Axial Flux Motors – Frequently Asked Questions (FAQ)

What are Axial Flux Motors? Axial flux motors differ from a radial flux motor in that its magnetic flux direction is axial, with current-carrying conductors arranged radially. Both the stator and rotor cores have a disc-like structure. What are the advantages / benefits? In situations with the same power,they have a smaller volume and lighter weight. For instance, our axial flux motor weighs and occupies approximately half the space of a traditional radial flux motor, resulting in higher power and torque density. Why they aren’t popular? While radial flux motors are well understood, and manufacturing methods are well-established, axial flux motors face significant challenges in design and production. The gap between the stator and rotor, known as the air gap, is crucial in the motor’s magnetic circuit. Axial flux rotor lying flat on the stator significantly increases the air gap area, demanding high precision in surface smoothness and gap uniformity. This translates to stringent requirements for manufacturing and assembly precision, leading to high production costs and low production flexibility. The manufacturing difficulty also hinders the scalability of axial flux motors, resulting in a smaller market capacity with insufficient component matching. However, our axial flux motor has overcome these challenges, achieving mass production and undergoing 15,000 km of safety testing in vehicles like buses and heavy trucks, ensuring stability and safety. What are the applications of them? They find application in various scenarios: What electric vehicles are they suitable for? They can be applied in various electric vehicles, including: Inquiry: contact@brogenevsolution.com Contact

Scroll to Top